« ■コマ大数学科167講(補習):経路問題 | トップページ | ■コマ大数学科169講:北大に挑戦Part3 »

2010年2月10日 (水)

■コマ大数学科168講:北大に挑戦Part2

今回もまたまた北海道大学の入試問題に挑戦だ「たけしのコマ大数学科」

問題:図のような三角錐の展開図がある。AB=4, AC=3, BC=5, ∠ACD=90°で△ABEは正三角形である。このとき、三角錐の体積を求めよ。
※北海道大学入試問題(2009年)

今回は極寒のロケということで、今度こそ北海道ロケと思いきや、コマ大数学研究会のやって来たところは、気温が氷点下(マイナス)4°の「アイスバー東京」(銀座)。ここで、問題文の三角錐の一辺が6倍の展開図を描き、それを組み立て、中に水を入れて氷にする作戦?

体積は作成した氷の三角錐を水槽に入れ、上昇した水面の位置を読みとった。水面は、4~6ミリの間を揺れ動いたが、「0.4cm」とした。ダンカンは、無理に氷を沈めたけれど、水面から出た氷の部分は、水から氷になるとき、増えた分の体積。だから、正しく体積を測ろうとしたら、無理に沈めちゃダメよ^^;

168講(1)
番組では水槽の底面積は不明だったが、「2.5」という答えから逆算すれば、水槽の底面積は「1350」平方cmである。拡大率の「216」だけど、作成した三角錐の氷の体積は、一辺を6倍にしたので、X方向、Y方向、Z方向も同じく6倍して、6*6*6=216倍だね。検算すると、1350×0.4÷216=2.5になる。

爺は、コマ大生の答えが正解になるには、水面の高さを「何cm」と読みとれば、よかったのかを計算してみた。

168講(2)

正解だった場合の「高さ」をゴールシークで求める^^;(計算すれば、ゴールシークを使うまでもない><;)

168講(3)

おおよそ「0.55cm」になるわけね^^;

マス北野は、いつものように、考え方だけをポヌさんに伝え、計算をまかせてしまう。

マス北野&ポヌさんは、図の「h」が三角錐の高さになるとして計算したが……。

168講(4)

東大生チーム(衛藤樹さん&伊藤理恵さん)は、今回の問題も秒殺で解いてしまった。

168講(5)

ポイントは、三角錐の底面を△ABCとしたとき、△ABCは直角三角形なので、頂点Gは、CD上かつEM上にあることに気付くこと。東大生チームの解答を見て、マス北野は「高さは√3だ」と叫んだが、時、すでに遅し。

正解は「2√3」

竹内薫センセの「美しき数学の時間」

竹内センセは、解法を2つ用意していた。「あることに気付けば…」というのは、東大生の解法。

もうひとつの解法は、三角錐の底面が直角三角形であることに着目して、三次元の座標系で解く解法だ。

168講(6)

168講(7)

※詳しくは、北海道大学入試「解答解説」を見てね。

爺の勝手な憶測だが、竹内センセは、東大生チームがこの解法で解くことを、想定していたんじゃないかな……。う~ん、秒殺で解かれた上に、これでは、竹内センセの立つ瀬がないぞよ;;

で、問題の展開図を組み立てた立体を「Shade」で描いてみた。

168講(8)

168講(9)

見る角度によっては、かなり、ひしゃげた三角錐だ。

※コマネチ大学数学科の「過去問題」はこちらから。
コマ大数学科:2008年度全講義リスト
コマネチ大学数学科:2007年度全講義リスト
コマネチ大学数学科:2006年度全講義リスト


|

« ■コマ大数学科167講(補習):経路問題 | トップページ | ■コマ大数学科169講:北大に挑戦Part3 »

コメント

私も東大生と同じ解き方をしました。
あの考えなら中学生の知識でも解けますね。

投稿: 万打無 | 2010年2月14日 (日) 22時17分

コメントを書く



(ウェブ上には掲載しません)


コメントは記事投稿者が公開するまで表示されません。



トラックバック

この記事のトラックバックURL:
http://app.f.cocolog-nifty.com/t/trackback/99648/33317411

この記事へのトラックバック一覧です: ■コマ大数学科168講:北大に挑戦Part2:

« ■コマ大数学科167講(補習):経路問題 | トップページ | ■コマ大数学科169講:北大に挑戦Part3 »