■コマネチ大学数学科25:和算
今回は江戸時代の数学書「塵劫記」に出てくる「百五減算」という算術の問題。
ある人の年齢を 3、5、7 でそれぞれ割った余りがそれぞれ 1、2、3 になるとき、その人の年齢はいくつでしょうか?
で、さっそく私も「エクセル」で「百五減算」を作ってみた。「塵劫記」や「百五減算」は、Wikipediaに詳しい解説が載っているので、そちらを参照してほしい。

※ガダルカナル・タカさんの場合
ポイントは、3、5、7の最小公倍数が105になること。エクセルでは「=LCM(3,5,7)」とすれば、簡単に求めることができる。もっとも、3、5、7は素数なので、3×5×7=105ということだ。
で、105をそれぞれ3、5、7で割ると、35、21、15になる。求める数(年齢)を「n」とし、3、5、7それぞれの数で割った余りを、a、b、cとすると、
百五減算の公式は、
n=70a+21b+15c-105k となる。(kは、nが105よりも大きいとき、何回が引くという意味)
番組を見ていて、一番ひっかかったのは、なぜ「35」だけを2倍して「70」にするかだろう。ちゃんと竹内センセは解説をしてくれているのだが、こちらの理解力が足らず、モヤモヤした感じが残った。
これは実際に「=mod(35,3)」としてみるとわかる。「35」を「3」で割ると、余りが「2」になる。
つまり、こーゆーことだ。
70は、5と7で割り切れるが、3で割ると1余る数
21は、3と7で割り切れるが、5で割ると1余る数
15は、3と5で割り切れるが、7で割ると1余る数
105は、3でも5でも7でも割り切れる数(最小公倍数)
番組では、全員が正解した。しかし、納得がいかないのは「コマネチ・フィールズ賞」をコマ大数学研究会が取ったこと。東大生チームは、ちゃんと数式を立てて解き、条件を満たす数として、52、157、262を出した。そこで、コマ大のロケで問題と同じ余りが「1、2、3」になった番組プロデューサの「吉田さん」が、157歳や、262歳はありえないから、「52歳」という答えだった。これを「最終的には見た目」と判断されたが、これが現実的な答えだ。百五減算だって、江戸時代105歳を超える長寿の人はいなかったろうから、105を引いているわけで、その点では同じだと思う。
私はコマ大数学研究会を応援しているが、今回の竹内裁定には疑問が残る。マス北野も「こういう情けが番組の視聴率を下げる」と発言していた。
でも、今回は全員正解の引き分けなので、オープニングの
ダンカン「倍数の例を挙げてください」
ガンビーノ小林「9は3の倍数」
〆さばアタル「25は5の倍数」
無法松「501はリーバイス」
という、久々のヒットで「フィールズ賞」をもらったと考えれば納得。コマ大、ファイト、ファイト、ファイト!!
| 固定リンク
この記事へのコメントは終了しました。
コメント
裁定ミスですね(汗)
相方を失った、〆さばアタルさんの憔悴した表情を見ていて、つい、「芸人魂」がわからずに賞を出しました。私は芸人でないので、後で、ハッと気づいたんです。
投稿: 竹内薫 | 2006年11月 4日 (土) 01時21分
番組収録はかなり前に行われたんですね。
その時期の竹内センセの日記を思い起こしました。
あらためて、〆さばヒカルさんのご冥福をお祈りします。
私のミスで「薫日記」にトラックバックを
二度送信してしまいました。申し訳ないです。
投稿: ガスコン | 2006年11月 4日 (土) 02時36分