« 第19回:ジャンケンゲーム理論 | トップページ | 負け犬と、勝ち犬? »

2006年9月 2日 (土)

第20回:ラマヌジャン

 これが頭の中にひっかかっていると、仕事がなかなか進まない「たけしのコマネチ大学数学科」、許して編集者さん、懇願の「第20回」。今回のテーマは「ラマヌジャン」。

 今回、コマ大数学研究会のロケ地は、高円寺の商店街。私が放送作家なら、湾岸に並ぶ、シャッターに大きく数字がペイントされている倉庫をロケ地に選ぶな。とゆーか、この番組、放送作家は介在しているのか。それは、ともかく「10軒以上、50軒以内で1から番号の振ってある家がある。それを左右(番号の小さいほうからと、番号の大きいほう)から番号を足していき、左右が同じ数になる家の番号を答えよ」という問題。

Ex_2001  まずは、1番から8番までの例題を考えると、6番目の家が左右の番地を足した数が等しくなる。これを踏まえて、問題を解くわけだが、実際にロケで左右から数を足していく、数学研究会はカンタンジャンと思うかもしれない。私も力まかせにエクセルで1から50までをオートフィルで入力し、B列は上から、C列は下から足していく方法で解こうとしたが、そうは、イカヌジャン。数が合わないのだ。つまり、家の数は10以上、50以内ということで、決まっていないということ。数学研究会も、最初、そこでつまづいたが、研究会メンバーの「〆さばアタル」のひらめきで見事、解決した。

Ex_2002  で、完全なネタばらしになってしまうが、私も数学研究会と同じ方法で正解にたどり着いた。言い忘れたが、エクセルで足し算の数式を入力する際、B列は上からなので問題ないが、C列の場合、下からとなる。エクセルの相対参照は、アクティブセルを基準にして行われるので、下から上方向のオートフィルでも問題ない。

 マス北野は、例題から見事な直観力を発揮して正解したが、「ラマヌジャン」は天才的な直観力を持った数学者だったらしい。竹内薫センセの「美しき数学の時間」で、今回のテーマ「ラマヌジャン」の連分数を使った解法を紹介してくれた。

 家の数が増えた場合、力まかせの数学研究会の手法では、なかなか正解にたどりつけなくなる。ラマヌジャンは、友人に「1500以内で…」という条件を加えられた問題を出されたとき、即座に「204」と答えたそうだ。竹内薫センセは、愛機「MacBook」の自作(?)プログラムで、連分数による解法の実演を見せてくれた。

 私は「連分数」のことなど、まったくわからないが、ある法則を見つけた。これなら「エクセル」だって、数が増えたときも一瞬で答えることができるぞ。

Ex_2003

 最初の家が8軒のときの例題では、分母が「2」、分子が「3」で、答えが「2×3」で「6」になった。次が「7」と「5」で、答えが「35」だ。すると、次の分母は前の答えの分母と分子を足したもの。分子は、その分母に前の答えの分母を足したもの、と考えた。1行目の数式は「=B1+B2*2」と書き表すこともできる(こっちのほうがスマートかも)。家の数は、竹内センセの解説どおり、「分子(n)の二乗」と「分母(m)の二乗×2」と比べて、小さいほうを取る(…とココでも、法則発見)。

Ex_2004

 この簡単な数式を入力したセルをオートフィルで入力すると、ちゃんと答えが出るじゃないですか。どうしてそうなるのか(この方法が正しいことを)証明しなさいと言われても、私にはできないけれど……。だいたい「連分数」なんて、わけがワカラヌジャン!

無限の天才―夭逝の数学者・ラマヌジャン Book 無限の天才―夭逝の数学者・ラマヌジャン

著者:ロバート カニーゲル
販売元:工作舎
Amazon.co.jpで詳細を確認する

|

« 第19回:ジャンケンゲーム理論 | トップページ | 負け犬と、勝ち犬? »

コメント

ラマヌジャンは、番組で御紹介したのとはちがう連分数を考えていた、という説もあって、彼の思考過程は、実はわかっていません。

こういうのって、たとえば、九九じゃなくて一九一九(?)を諳んじている人のほうが計算が速いのと似ていますよね。ただ、ラマヌジャンは、その「あたりまえ」の範囲が天才的に広いわけで・・・。

うらやましい。

投稿: 竹内薫 | 2006年9月 4日 (月) 16時52分

いつも、問題作成&解説、ご苦労さまです。

日本では、9×9ですが、インドでは19×19まで
覚えさせられるようですね。

天才のラマヌジャンや、将棋の羽生さんのような
直感のひらめきは、いったいどうなっているのやら……。

投稿: ガスコン | 2006年9月 4日 (月) 21時14分

> 次の分母は前の答えの分母と分子を足したもの。分子は、その分母に前の答えの分母を足したもの、と考えた。
実はこれが番組でいっていた Pell 方程式の解の求め方なんですね。

投稿: ☆○ | 2006年9月 5日 (火) 20時13分

そ……そうなんですか;;

投稿: ガスコン | 2006年9月16日 (土) 04時28分

コメントを書く



(ウェブ上には掲載しません)


コメントは記事投稿者が公開するまで表示されません。



トラックバック

この記事のトラックバックURL:
http://app.f.cocolog-nifty.com/t/trackback/99648/3288813

この記事へのトラックバック一覧です: 第20回:ラマヌジャン:

« 第19回:ジャンケンゲーム理論 | トップページ | 負け犬と、勝ち犬? »